5-3 Transformers

Zhonglei Wang WISE and SOE, XMU, 2025

Contents

- 1. Motivation
- 2. Dot-product self-attention
- 3. Position encoding
- 4. Multi-head self-attention
- 5. Transformer layer
- 6. Transformer model

Motivation

- 1. Existing RNNs achieve great success for modeling sequential data
 - Using gates is inefficient to capture long-distance information
 - They are difficult to be parallelized, so their computation efficiency is limited
- 2. Vaswani et al. (2017) proposed a multi-head self-attention framework for translation
 - It does not rely on the RNN architecture
 - It uses self-attention to extract information from contexts
 - It can be parallelized to achieve high computation efficiency
 - It is widely used in deep learning models to extract information from sequential data

Transformers

- 1. Transformer is a new architecture
 - It uses shared parameters to deal with long input passages of different lengths
 - It detects connections between words represented by embeddings
- 2. It achieves the desired properties by dot-product self-attention
- 3. Consider a sentence "I have arrived at Beijing from Xiamen."
 - Assume it has been tokenized, and its embeddings are x_1, \ldots, x_8
- 4. For simplicity, use x_i , instead of $x^{(i)}$ for the word vector

Dot-product self-attention

- 1. For each word vector x_i , we first compute
 - Query:

$$\boldsymbol{q}_i = \boldsymbol{b}_q + \boldsymbol{W}_q \boldsymbol{x}_i$$

• Key:

$$\boldsymbol{k_i} = \boldsymbol{b_k} + \boldsymbol{W_k} \boldsymbol{x_i}$$

• Value:

$$\boldsymbol{v}_i = \boldsymbol{b}_v + \boldsymbol{W}_v \boldsymbol{x}_i$$

- 2. The shared model parameters are $\{b_q, W_q, b_k, W_k, b_v, W_v\}$
- 3. The dimensions of model parameters are chosen such that
 - The dimensions of x_i and v_i are usually the same
- $\text{The}_{\text{\tiny Wang, Z. (WISE \& SOE, XMU)}} \text{dimensions of } \textbf{\textit{q}}_i \text{ and } \textbf{\textit{k}}_i \text{ should be the same, but may be different from } \textbf{\textit{x}}_i$

Dot-product self-attention

- 1. For $i \in \{1, ..., 8\}, x_i$ is updated by dot-product self-attention
 - For $l \in \{1, \dots, 8\}$,

$$a_{il} = a(\mathbf{q}_i, \mathbf{k}_l)$$

- a(x, y): an alignment function (Bahdanau et al., 2015), measuring how well x and y match
- $^{\triangleright}$ Consider $a(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}$ for practical use
- 2. Normalize $\{a_{il}: l=1,\ldots,8\}$ to obtain

$$w_{il} = \frac{\exp(a_{il})}{\sum_{h=1}^{8} \exp(a_{ih})}$$

Dot-product self-attention

- 1. For $i \in \{1, ..., 8\}, x_i$ is updated by dot-product self-attention (Cont'd)
 - Update x_i by

$$oldsymbol{x_i'} = \sum_{l=1}^8 w_{il} oldsymbol{v_l}$$

 \triangleright w_{il} measures how much "attention" we should pay to v_l when updating x_i

2. Calculate $\{w_{il}: l = 1, ..., 8\}$ for each i to obtain UPDATED features $\{x'_i: i = 1, ..., 8\}$

Illustration

To calculate UPDATED feature for x_7

Updated:

Normalization:

Self-attention:

 q_1, k_1, v_1 q_2, k_2, v_2

 \boldsymbol{x}_3

 q_3, k_3, v_3 q_4, k_4, v_4 q_5, k_5, v_5 q_6, k_6, v_6

 $oldsymbol{x}_4$

 q_7, k_7, v_7

Parameters:

Embedding:

 $oldsymbol{x}_1$

 $oldsymbol{x}_2$

 $oldsymbol{b_q}, \quad oldsymbol{W_q}, \quad oldsymbol{b_k} \quad igwedge W_k, \quad oldsymbol{b_v}, \quad oldsymbol{W_v}$

 x_5

 $oldsymbol{x}_6$

 x_7

Vectorization

1. Denote

$$egin{aligned} oldsymbol{X} &= (oldsymbol{x}_1, \dots, oldsymbol{x}_7)^{\mathrm{T}} \in \mathbb{R}^{d imes 7} \ oldsymbol{V} &= oldsymbol{b}_q oldsymbol{1}^{\mathrm{T}} + oldsymbol{W}_q oldsymbol{X} \ oldsymbol{K} &= oldsymbol{b}_k oldsymbol{1}^{\mathrm{T}} + oldsymbol{W}_k oldsymbol{X} \ oldsymbol{V} &= oldsymbol{b}_v oldsymbol{1}^{\mathrm{T}} + oldsymbol{W}_v oldsymbol{X} \ oldsymbol{X}' &= (oldsymbol{x}_1', \dots, oldsymbol{x}_7')^{\mathrm{T}} \in \mathbb{R}^{d imes 7} \end{aligned}$$

2. Then, the dot-product self-attention is

$$\boldsymbol{X}' = \boldsymbol{V} \cdot \operatorname{Softmax}(\boldsymbol{K}^{\mathrm{T}} \cdot \boldsymbol{Q})$$

Positional encoding

- 1. It fails to concentrate on the ORDER of the words
- 2. Vaswani et al. (2017) to add a matrix \boldsymbol{P} to \boldsymbol{X}

$$X_p = X + P$$

- ullet P: encodes position information
- X_p : the updated embedding matrix
- 3. For P, we may consider to use sin and cos functions with different frequencies

$$P_{(2i),j} = \sin(j/10000^{2i/d}), \quad P_{(2i+1),j} = \cos(j/10000^{2i/d})$$

- *i*: dimension index
- j: position index

Scaled dot-product self-attention

- 1. There may be large values in $m{K}^{\mathrm{T}}\cdot m{Q}$
- 2. Then, a certain "value" may dominate
- 3. The model may be inefficient
- 4. To prevent such inconvenience, we consider

$$oldsymbol{X}' = oldsymbol{V} \cdot \operatorname{Softmax}\left(rac{oldsymbol{K}^{\mathrm{T}} \cdot oldsymbol{Q}}{\sqrt{d_q}}
ight)$$

- d_q : the dimension of "query" as well as "key"
- Statisticall, we are dividing the "standard deviation" to make the result stable

Multi-head self-attention

- 1. It is limited to only use a single set of "queries", "keys" and "values"
- 2. We may consider H such sets
- 3. Denote

$$\boldsymbol{X_h'} = \boldsymbol{V_h} \cdot \operatorname{Softmax} \left(\frac{\boldsymbol{K_h^{\mathrm{T}}} \cdot \boldsymbol{Q_h}}{\sqrt{d_q}} \right) \quad (h = 1, \dots, H)$$

- Q_h, K_h, V_h : the hth set of "queries", "keys" and "values"
- Different set of model parameters are used for different "head"
- 4. The updated feature matrix is obtained by concatenating information from those "head

$$oldsymbol{X}' = oldsymbol{W}_o(oldsymbol{X}_1^{\mathrm{T}}, \dots, oldsymbol{X}_H^{\mathrm{T}})^{\mathrm{T}}$$

ullet W_o : weight matrix to combine information from different heads

11

Remarks

1. Advantages:

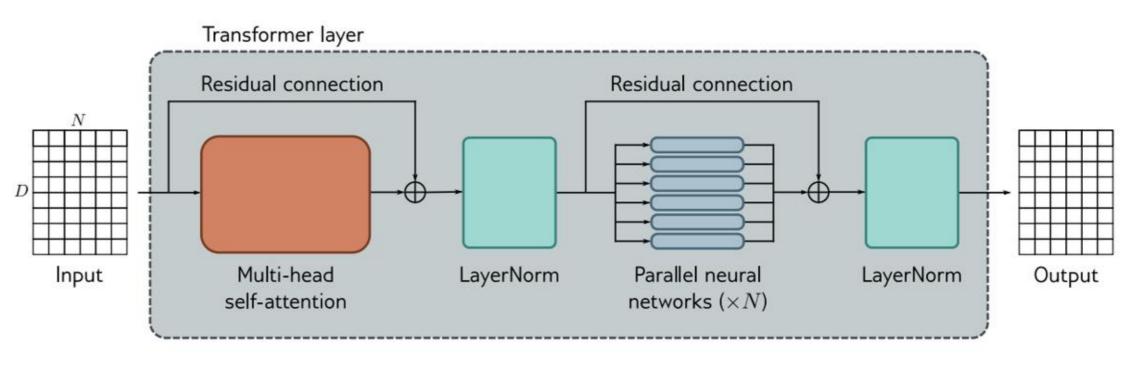
- Parallelization: Unlike sequential models, it allows for full parallel processing which speeds up training.
- Long-Range Dependencies: It provides direct access to distant elements making it easier to model complex structures and relationships across long sequences.
- Contextual Understanding: Each token's representation is influenced by the entire sequence which integrates global context and improves accuracy.
- Interpretable Weights: Attention maps can show which parts of the input were most influential in making decisions.

Remarks

1. Disadvantages:

- Computational Cost: Especially for long sequence with n tokens, it requires computing pairwise interactions between all input tokens which causes a time and memory complexity of $O(n^2)$.
- Memory Usage: Large number of pairwise calculations in self-attention uses high memory while working with very long sequences or large batch sizes.
- Lack of Local Context: It focuses on global dependencies across all tokens but it may not effectively capture local patterns. This can cause inefficiencies when local context is more important than global context.
- Overfitting: Due to its ability to model complex relationships it can overfit when it is trained on small datasets.

- 1. Its building blocks consist of
 - Multi-head dot-product self-attention (for word interaction)
 - Fully connected NN (for each word with shared parameters)
 - Residual connection
 - Layer normalization
- 2. Figure 12.7 of Prince (2024)



1. Calculation is

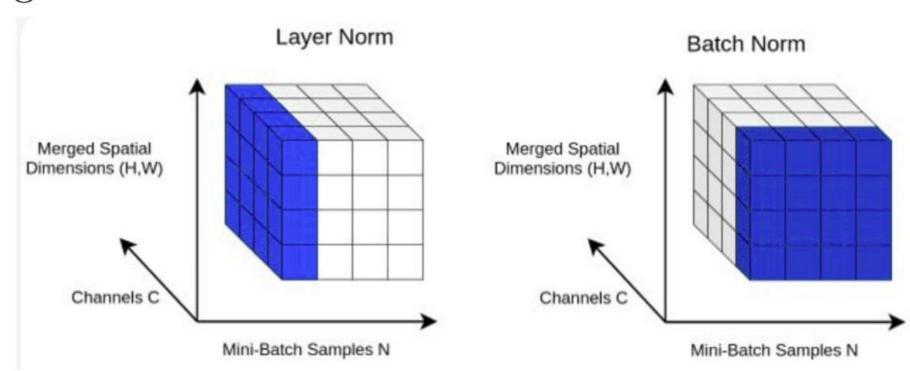
$$m{X} \leftarrow m{X} + \mathrm{MhSa}(m{X})$$
 $m{X} \leftarrow \mathrm{LayerNorm}(m{X})$
 $m{x}_i \leftarrow m{x}_i + \mathrm{MLP} m{x}_i$
 $m{X} \leftarrow \mathrm{LayerNorm}(m{X})$

- ullet X: matrix after embedding and positional encoding for a SINGLE input sequence
- \boldsymbol{x}_i : the *i*th column of \boldsymbol{X}
- MhSa(X): multi-head dot-product self-attention
- MLP(X): fully connected NN (with shared parameters)
- LayerNorm(X): layer normalization

Wang, Z. (WISE & SOE, XMU)

- 1. Recall batch normalization
 - Applied to EACH feature of ALL of all examples in the same mini-batch
 - Not applicable to NLP since input sequences may have different lengths

- 1. Layer normalization is applied across tokens within the SAME input sequence
- 2. The figure below is from https://theaisummer.com/normalization/
 - \bullet N: the size of a mini-batch or input sequences
 - \bullet C: number of features of length of input sequences
 - \bullet H, W: vectorized feature of embedding



Transformer model

- 1. It mainly consists of several transformer layers
- 2. Encoder-decoders are used in sequence-to-sequence tasks
 - Encoder (text to numbers): transforms the text embeddings into a representation that can support a variety of tasks
 - Decoder (numbers to text): predicts the next token to continue the input text
- 3. Examples
 - BERT: an encoder model
 - ChatGPT: a decoder model
- 4. See Chapter 12 of Prince (2024) for details